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Optimal Couple Projections for Domain Adaptive
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Abstract— In recent years, sparse representation-based clas-
sification (SRC) is one of the most successful methods and
has been shown impressive performance in various classification
tasks. However, when the training data have a different distrib-
ution than the testing data, the learned sparse representation
may not be optimal, and the performance of SRC will be
degraded significantly. To address this problem, in this paper,
we propose an optimal couple projections for domain-adaptive
SRC (OCPD-SRC) method, in which the discriminative features
of data in the two domains are simultaneously learned with the
dictionary that can succinctly represent the training and testing
data in the projected space. OCPD-SRC is designed based on
the decision rule of SRC, with the objective to learn coupled
projection matrices and a common discriminative dictionary such
that the between-class sparse reconstruction residuals of data
from both domains are maximized, and the within-class sparse
reconstruction residuals of data are minimized in the projected
low-dimensional space. Thus, the resulting representations can
well fit SRC and simultaneously have a better discriminant
ability. In addition, our method can be easily extended to multiple
domains and can be kernelized to deal with the nonlinear
structure of data. The optimal solution for the proposed method
can be efficiently obtained following the alternative optimization
method. Extensive experimental results on a series of benchmark
databases show that our method is better or comparable to many
state-of-the-art methods.

Index Terms— Dictionary learning, sparse representation,
domain adaptation, joint projection and dictionary learning.

I. INTRODUCTION

OVER the past few years, sparse representation has
been successfully used in a wide variety of com-

puter vision problems such as face recognition [1], image
restoration [2], [3], image denoising [4] and image
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Fig. 1. Sample images from two different domains, namely Amazon and
DLSR datasets.

classification [5], [6]. To represent data efficiently and provide
resilience against noise, sparse coding seeks a description
of the signal as a linear combination of a few atoms in
a dictionary that is usually over-completed. In sparse rep-
resentation, the dictionary plays an important role as it is
expected to faithfully and discriminatively represent the query
image. Wright et al. [1] proposed a sparse representation
based classification (SRC) method that employed the entire
set training samples as the dictionary. Earlier methods take
off-the-shelf bases (e.g., wavelets) as the dictionary [7], yet
these dictionaries may not be optimal choices in certain
recognition tasks. Instead, learning the best dictionary directly
from training samples can lead to better performance [8]–[11].
There have been many state-of-the-art dictionary learning (DL)
algorithms proposed in the literature, such as [12]–[16].

When the training data used to train a classifier has a
different distribution than the testing data which the classifier
is applied, the learned dictionary may be inefficient, and the
classification performance will degrade significantly at test
time. In many practical applications, we often confront with
these situations, for example, Fig. 1 shows some images of
the bike class from two different datasets. Although these
images have the same object category label, they are dis-
similar visually. These variations often result in poor cross-
dataset generalization. Domain adaptation (DA), also known
as domain transfer learning, attempts to tackle this problem,
where the training and testing data have the same categories,
but the domain shift is unknown [17].

Domain adaptation has received substantial attention and
has been extensively studied in many areas, including speech
and language processing [18], machine learning [19], [20], and
more recently computer vision [17], [21]–[23], [30]. Domain
adaptation for visual recognition was first investigated by
Saenko et al. [23] in a semi-supervised setting. This idea
was extended by Brian et al. [17] to handle asymmetric
domain transformation. Gopalan et al. [22] addressed the
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problem of unsupervised domain adaptation, by using an
incremental approach based on Grassmann manifolds. This
was further extended to learning a kernel distance between
domains in [24]. A feature augmentation method was proposed
in [28] and an information-theoretic method for unsupervised
domain adaptation was proposed by Shi and Sha [29]. Var-
ious subspace based methods have also been proposed to
tackle domain adaptation problem [25]–[27]. The idea behind
these methods aims to find a latent space that is domain
invariant, and then project the data from different domains
onto this space where classification is performed. Another
class of domain adaptation algorithms is based on parameter
adaptation, such as domain transfer SVM [32], max-margin
domain transfer [33] and domain adaptive multiple kernel
learning [34]. We refer readers to [35] for a comprehensive
survey on domain adaptation.

Sparse representation and dictionary based methods
for domain adaptation are also gaining significant atten-
tion [36]–[39]. Zhang et al. [36] proposed a domain adaptive
sparse representation based classification method (DASRC)
that learns projections of data in a space where the sparsity
of data is maintained. Ni et al. [27] proposed an unsupervised
domain-adaptive dictionary learning framework by generating
a set of intermediate dictionaries that bridge the domain
shift. Shekhar et al. [38], [39] proposed a generalized domain
adaptive dictionary learning framework for jointly learning
coupled projections of data in the source and target domains.
Nonetheless, a major drawback of these adapting dictionary
learning approaches is that they have no direct connection to
the decision rule of SRC. Thus, the learned spares represen-
tation may not be optimal for domain adaptation recognition
problem.

Recently, deep learning has been widely applied in
cross-domain classification and made notable improve-
ment [53]–[57]. This is due in part to the fact that deep
networks are able to learn extremely powerful hierarchical
nonlinear representations of the inputs [58]–[60], making them
suitable for domain adaptation. Sun and Saenko [58] addressed
the case when the target domain is unlabeled, by extending
correlation alignment objective to learn a nonlinear transfor-
mation that aligns correlations of layer activations in deep
neural networks. Tzeng et al. [59] proposed a CNN archi-
tecture which introduces an adaptation layer and an additional
domain confusion loss, to learn a representation that is both
semantically meaningful and domain invariant. Although its
success, deep learning based methods still have limitations.
For example, they require a large number of additional training
images, which is not available in many practical applications
and superior computational platforms. As an alternative, our
paper focuses on a method that does not use the large number
of additional training samples.

Based on the above motivations, in order to enhance the
recognition performance of SRC for domain adaptation, here
we propose a novel dictionary learning method termed optimal
couple projections for domain adaptive sparse representation-
based classification (OCPD-SRC), which jointly learns the
transformations of data in different domains and a discrim-
inative dictionary in a common space. Since SRC predicts the

Fig. 2. Overview of the proposed OCPD-SRC method.

class label of a given testing image based on the representation
residual, OCPD-SRC learns coupled projection matrices and a
common dictionary such that in the projected low dimensional
subspace the between-class sparse reconstruction residuals of
data in different domains are maximized and the within-
class sparse reconstruction residuals of data are minimized.
Thus, the resulting representations can well fit SRC and
simultaneously have a better discriminant capacity. Moreover,
the jointly learned projections can preserve the sparse structure
of data, and the learned dictionary can represent the projected
data from both domains well, and further enhances the dis-
criminant capability of the coding vectors in the transformed
subspace. Therefore, SRC can achieve optimal performance in
the reduced space. Furthermore, our method can easily extend
to handle multiple domains and is able to handle sparsity
in nonlinear models by using kernel method. We adopt an
iterative learning framework to alternatively derive the coupled
projections and class-wise dictionary. An overview of the
proposed method is shown in Fig. 2.

The remainder of paper is organized as follows.
Section 2 reviews some of the related works. The proposed
algorithm is introduced in Section 3, and the optimization
technique is described in Section 4. Section 5 presents the clas-
sification scheme. Comparative experiments for the proposed
algorithm and the related algorithms are shown in Section 6.
Section 7 summarizes our conclusions.

II. RELATED WORK

A. Sparse Coding and Dictionary Learning

Given an over-complete dictionary D and a signal y, finding
a sparse representation of y in D entails attaining the following
optimization objective [1], [40]

α̂ = arg min
α

‖α‖0 s.t . y = Dα, (1)

where ‖ · ‖0 denotes the �0-norm, which counts the numbers
of nonzero entries in the vector α. Solving for the objective in
Eq.(1) is NP-hard and extremely time-consuming. Hence, an
approximate solution is usually sought by the �1 optimization
formulation

α̂ = arg min
α

‖y − Dα‖2
2 + λ‖α‖1, (2)
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where λ is the regularization parameter to trade off between
reconstruction error and sparsity.

The dictionary learning problem allows obtaining an appro-
priate dictionary that has a small reconstruction error over
training data while preserving the sparse penalty. Let Y be
a set of N input signals in a m-dimensional feature space
Y = [y1, y2, · · · , yN ]. A dictionary with a fixed number of K
atoms can be derived by the following minimization

arg min
D,X

‖Y − DX‖2
2 + λ‖X‖1

s.t . ‖di‖2 = 1, ∀i (3)

where D = [d1, d2, · · · , dK ] ∈ Rm×K is the sought dictionary,
X = [α1,α2, · · · ,αN ], αi ∈ RK is the sparse code of input
signal yi over D. Each dictionary atom di is �2-normalized,
and a common approach for solving this problem is to update
X and D alternately. When the dictionary D is fixed, opti-
mizing the coefficient matrix X is exactly the sparse coding
problem. In reverse, to update dictionary with X fixed. The
dictionary can be learned class by class [41], [42].

B. Shared Domain-Adapted Dictionary Learning (SDDL)

We briefly explain the principle of shared domain-adapted
dictionary learning (SDDL) [38], [39] in this section. Suppose
we have the source and target domain data Y1 ∈ Rm1×N1 and
Y2 ∈ Rm2×N2 , respectively. SDDL aims to learn a shared
K -atoms dictionary D ∈ Rm f ×K and mapping P1 ∈ Rm f ×m1

and P2 ∈ Rm f ×m2 onto a common low-dimensional space that
minimizes the reconstruction error in the projected space. The
cost function can be expressed as follows

C1(D, P1, P2, X1, X2)=‖P1Y1 − DX1‖2
F +‖P2Y2 − DX2‖2

F ,

(4)

where X1 = [α1,α2, · · · ,αN1 ] ∈ RK×N1 and X2 =
[α1,α2, · · · ,αN2 ] ∈ RK×N2 are the sparse representations of
Y1 and Y2 over D, respectively. X1 and X2 subject to sparsity
constraints. P1 and P2 are orthogonal and normalized to
unit-norm.

To enforce the projections do not lose too much information
available in the original domains after the projection onto the
latent space, a PCA-like regularization term is added, given as

C2(P1, P2) = ‖Y1 − PT
1 P1Y1‖2

F + ‖Y2 − PT
2 P1Y2‖2

F . (5)

It is straightforward to show that the costs C1 and C2, after
ignoring the constant terms in Y can be written as

C1(D,˜P,˜X) = ‖˜P˜Y − D˜X‖2
F , (6)

C2(˜P) = −trace
(

(˜P˜Y)(˜P˜Y)T
)

, (7)

where ˜P = [P1, P2], ˜Y =
[

Y1 0
0 Y2

]

, and ˜X = [X1, X2].
Hence, the overall optimization becomes
{

D∗,˜P∗
,˜X

∗} = arg min
D,˜P,˜X

C1(D,˜P,˜X) + λC2(˜P)

s.t . PiPT
i = I, i=1, 2 and ‖x̃ j‖0 ≤T0, ∀ j,

(8)

where λ is a positive constant and T0 is the sparsity level.
When the projection matrices and the dictionary have been
learned, a novel test sample from the target domain can
be projected onto the latent domain using P2 and classified
it using the sparse embedding residual classifier proposed
in [52].

Let the class-wise dictionary D be D = [D1, · · · , Dc],
where c is the total number of classes. In order to improve
the discriminative between different classes, SDDL encourages
reconstruction samples of a given class by the dictionary of
the corresponding class, and penalizes reconstruction by out-
of-class dictionaries. Thus, the new cost function C1(D,˜P,˜X)
can be defined as

C1(D,˜P,˜X) = ‖˜P˜Y − D˜X‖2
F + μ‖˜P˜Y − D˜Xin‖2

F

+ ν‖D˜Xout‖2
F , (9)

where μ and ν are the weights given to the discriminative
terms, and matrices ˜Xin and ˜Xout are given as:

˜Xin[i, j ] =
{

˜X[i, j ], Di,˜Yj ∈ same class

0, otherwise,

˜Xout[i, j ] =
{

˜X[i, j ], Di,˜Yj ∈ different class

0, otherwise.

SDDL achieved appealing performance on face recogni-
tion and object recognition tasks. However, it has no direct
connection to the classification rule of SRC, which predicts
the class label of query sample using the reconstruction
residual. SDDL considers only the within-class reconstruc-
tion residual while ignoring the between-class reconstruc-
tion information during the learning process. This makes
the projections of data and dictionary lack of discrimina-
tive power in the reduced space, thus the learned sparse
representation may not be optimal for domain adaptation
classification.

III. PROPOSED METHOD

A. Formulation

In this section, we introduce a novel domain adaptation
dictionary learning method (OCPD-SRC). Based on the deci-
sion rule of SRC, our method not only learns coupled pro-
jections of data from both domains but also obtains a latent
discriminative dictionary simultaneously. It aims to maximize
the between-class sparse reconstruction residuals of data in
different domains and minimize the within-class sparse recon-
struction residuals of data in the projected common space.
Therefore, SRC can achieve the optimum performance in the
shared common subspace.

For each training sample from the source domain where
y1

i, j is the j -th sample of class i , we leave it out from the
training set and use the remaining training samples to linearly
represent it. By solving the �1 optimization problem, we find
a representation coefficient vector α1

i, j . Then we define the
within-class sparse reconstruction residual of source domain
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in the projected space J 1
w as follows

J 1
w = tr

⎛

⎝

c
∑

i=1

n1
i

∑

j=1

(P1y1
i, j − Dδi (α

1
i, j ))(P1y1

i, j − Dδi (α
1
i, j ))

T

⎞

⎠

= tr
(

(P1Y1 − D�1
w)(P1Y1 − D�1

w)T
)

= ‖P1Y1 − D�1
w‖2

F , (10)

where �1
w = [δ1(α

1
1,1), δ1(α

1
1,2), · · · , δc(α

1
c,n1

i
)] ∈ RK×N1 ,

n1
i is the number of training samples of class i from the source

domain, N1 = ∑c
i=1 n1

i . δi (·) is the characteristic function
which selects the coefficients associated with class i .

Similarly, we define J 1
b to evaluate the between-class sparse

reconstruction residual of source domain in the projected space

J 1
b = tr

⎛

⎝

c
∑

i=1

n1
i

∑

j=1

∑

s �=i

(P1y1
i, j −Dδs(α

1
i, j ))(P1y1

i, j −Dδs(α
1
i, j ))

T

⎞

⎠

= ‖P1Y1 − D�1
b‖2

F , (11)

where �1
b = [δs(α

1
1,1), δs(α

1
1,2), · · · , δs(α

1
c,n1

i
)] ∈ RK×N1 ,

δs(α
1
i, j ) is a vector whose only nonzero entries are the entries

in α1
i, j associated with class s, s �= i .

In the same manner, the within-class and between-class
sparse reconstruction residuals of target domain in the pro-
jected low-dimensional space can be defined as

J 2
w = tr

⎛

⎝

c
∑

i=1

n2
i

∑

j=1

(P2y2
i, j − Dδi (α

2
i, j ))(P2y2

i, j − Dδi (α
2
i, j ))

T

⎞

⎠

= ‖P2Y2 − D�2
w‖2

F , (12)

and

J 2
b = tr

⎛

⎝

c
∑

i=1

n2
i

∑

j=1

∑

s �=i

(P2y2
i, j −Dδs(α

2
i, j ))(P2y2

i, j −Dδs(α
2
i, j ))

T

⎞

⎠

= ‖P2Y2 − D�2
b‖2

F , (13)

where �2
w = [δ1(α

2
1,1), δ1(α

2
1,2), · · · , δc(α

2
c,n2

i
)] ∈ RK×N2 and

�2
b = [δs(α

2
1,1), δs(α

2
1,2), · · · , δs(α

2
c,n2

i
)] ∈ RK×N2 , n2

i is the

number of training samples of class i from the target domain,
N2 = ∑c

i=1 n2
i . δi (α

2
i, j ) and δs(α

2
i, j ) are the vectors whose

only nonzero entries are the entries in α2
i, j associated with

class i and s, s �= i , respectively.
In our method, we aim to maximize the between-class

sparse reconstruction residuals of data from both domains in
the transformed space. Thus, we maximize the following cost
function

max Jb = max{J 1
b + J 2

b }
= max{‖P1Y1 − D�1

b‖2
F + ‖P2Y2 − D�2

b‖2
F }

= max ‖˜P˜Y − D˜�b‖2
F , (14)

and simultaneous minimize the within-class sparse recon-
struction residuals of data from both two domains in the
transformed space

min Jw = min{J 1
w + J 2

w}
= min ‖˜P˜Y − D˜�w‖2

F , (15)

where ˜P = [P1, P2], ˜Y =
[

Y1 0
0 Y2

]

, ˜�b = [�1
b,�

2
b] and

˜�w = [�1
w,�2

w]. Thus, we learn ˜P and D by maximizing the
following objective function

J (˜P, D) = max
˜P,D

tr
(

(˜P˜Y − D˜�b)(˜P˜Y − D˜�b)
T
)

tr
(

(˜P˜Y − D˜�w)(˜P˜Y − D˜�w)T
)

s.t . P1PT
1 = P2PT

2 = I. (16)

Here, we require P1 and P2 are orthogonal. We show that this
leads to an efficient scheme for optimization and makes the
kernelization of the algorithm possible.

B. Multiple Domains

The above formulation can be extended so that is can handle
multiple domains. For the M domains problem, we simply
construct matrices ˜P, ˜Y, ˜�b, ˜�w as ˜P = [P1, · · · , PM],

˜Y =
⎡

⎢

⎣

Y1 · · · 0
...

. . .
...

0 · · · YM

⎤

⎥

⎦
, ˜�b = [�1

b, · · · ,�M
b ], and ˜�w =

[�1
w, · · · ,�M

w ].
With these definitions, Eq.(16) can be extended to multiple

domains as follows

J (˜P, D) = max
˜P,D

tr
(

(˜P˜Y − D˜�b)(˜P˜Y − D˜�b)
T
)

tr
(

(˜P˜Y − D˜�w)(˜P˜Y − D˜�w)T
)

s.t . PiPT
i = I, ∀i = 1, 2, · · · , M. (17)

Similar to [38] and [39], we can prove the following
proposition for the above optimization problem. The proof is
given in the Appendix A.

Proposition 1: There exists an optimal solution P∗
1, P∗

2, · · · ,
P∗

M, D∗ to Eq.(17), which has he following form:

P∗
i = (YiAi)

T , ∀i = 1, 2, · · · , M, (18)

D∗ = ˜P
∗
˜Y˜B, (19)

where ˜P
∗ = [P∗

1, P∗
2, · · · , P∗

M], for some Ai ∈ RNi ×m f and
some ˜B ∈ R

∑

Ni ×K .
With this proposition, the objective function can be written

as

J (˜A,˜B) = tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr(˜A
T
˜K˜Sw˜K

T
˜A)

, (20)

where ˜K = ˜Y
T
˜Y and ˜A

T = [˜AT
1 , · · · ,˜A

T
M]. ˜Sb = (I −

˜B˜�b)(I − ˜B˜�b)
T is the between-class scatter matrix, ˜Sw =

(I − ˜B˜�w)(I − ˜B˜�w)T is the with-class scatter matrix.
Here, the equality constraint now becomes

PiPT
i = AT

i KiAi = I, ∀i = 1, 2, · · · , M (21)

where Ki = YiYi. Then, the objective function could be
expressed as

J (˜A,˜B) = max
˜A,˜B

tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr(˜A
T
˜K˜Sw˜K

T
˜A)

s.t . AT
i KiAi = I, ∀i = 1, 2, · · · , M. (22)
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IV. OPTIMIZATION

We adopt a standard iterative learning framework to jointly
learning the desired projection ˜P via ˜A and the discriminative
dictionary D via ˜B. We divide the objective function in Eq.(22)
into two sub-problems: (1) keeping ˜B fixed followed by updat-
ing ˜A; and (2) keeping ˜A fixed followed by updating ˜B. Note
that, the optimization problem is non-convex. Still, numerical
simulations have shown that the algorithm usually converges to
a local maximum in a few iterations. The proposed algorithm
is shown in Algorithm 1.

Step 1 (Learn ˜A With Fixed ˜B): When ˜B is fixed, the opti-
mization can be solved by using trace ratio optimization
method [6], [43], [44].

In order to avoid over-fitting for trace ratio maximization
problem, we add a regularization term in the denominator to
ensure that ˜K˜Sw˜K

T + μI is of full rank.
We know that there is a maximum ρ∗ that is reached for

certain ˜A
∗
. Then, for any ˜A, we have

tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr
(

˜A
T
(˜K˜Sw˜K

T + μI)˜A
) ≤ ρ∗, (23)

and hence,

tr
(

˜A
T
˜K˜Sb˜K

T
˜A

)

− ρ∗tr
(

˜A
T
(˜K˜Sw˜K

T + μI)˜A
)

≤ 0. (24)

This means that for ρ∗ we have

tr
(

˜A
T
(˜K˜Sb˜K

T − ρ∗(˜K˜Sw˜K
T + μI)˜A

)

≤ 0.

To optimize our objective function, we define a function

f (ρ) = max
˜A

G(˜A, ρ)

= max
˜A

tr
(

˜A
T
(˜K˜Sb˜K

T − ρ∗
˜K˜Sw˜K

T − ρμI)˜A
)

= max
˜A

tr
(

˜A
T
(˜K(˜Sb − ρ˜Sw)˜K

T − ρμI)˜A
)

. (25)

Here, f (ρ) has the following properties, which are proved in
the Appendix B.

Lemma 1: (i). f (ρ) is a decreasing function. (ii). f (ρ) = 0
i f f ρ = ρ∗.

In addition, if ρ is negative and small enough, the matrix
˜K˜Sb˜K

T − ρ∗
˜K˜Sw˜K

T − ρμI becomes a positive semi-definite
matrix, hence f (ρ) is bigger than 0. Similarly, if ρ is very big,

the matrix ˜K˜Sb˜K
T − ρ∗

˜K˜Sw˜K
T − ρμI becomes a negative

semidefinite matrix, hence f (ρ) is smaller than 0. Based on
Lemma 1, we can see that ρ∗ always exists.

Following [6] and [44], the root of the decreasing function
f (ρ) and the corresponding ˜A could be found by updating ρ
and ˜A alternately during iterations. For a given ρ, let ˜A(ρ) be
the solution of Eq.(25). We define a function

f ′(ρ) = −tr
(

˜A(ρ)T (˜K˜Sw˜K
T + μI)˜A(ρ)

)

(26)

with ˜A(ρ), the root could be found by ρnew = ρ − η1
f (ρ)
f ′(ρ) ,

where η1 is the step length. Now, let us describe how to
find ˜A(ρ) for a given ρ.

With the constraint AT
i KiAi = I, ˜A can be found by solving

max
˜A

tr
(

˜A
T
(˜K(˜Sb − ρ˜Sw)˜K

T − ρμI)˜A
)

.

s.t . AT
i KiAi = I, ∀i = 1, 2, · · · , M. (27)

In order to efficiently solve ˜A, the formulation in Eq.(27) can
be simplified expressed as follows

max
G

tr(GT HG)

s.t . GT
i Gi = I, ∀i = 1, 2, · · · , M, (28)

where H = �− 1
2 VT (˜K(˜Sb − ρ˜Sw)˜K

T − ρμI)V�− 1
2 .

Proof: Let G = �
1
2 VT

˜A, where V and � come from the
eigen decomposition of ˜K = V�VT . Substituting H and G
into Eq.(28), we get the required form of the optimization in
Eq.(27). Thus, the solution for ˜A can be recovered simply by

˜A = V�− 1
2 G. (29)

Similar to [38], Eq.(28) can be solved efficiently using the
algorithm proposed by [45]. The alternating projection steps
for finding ˜A and ρ are described in Algorithm 2.

Algorithm 1 OCPD-SRC

Input: Training set {Yi}M
i=1 and corresponding class label

{ci}M
i=1 for M domains, parameters λ, η1, η1, μ, dictionary

size K and dimension m f .

Initialization: Initialize ˜A such that ˜A
T
i Ki˜Ai = I,

∀i = 1, 2, · · · , M.
For this, find SVD of kernel matrix Ki = ViSiVT

i ,
then set Ai as the matrix of eigenvectors with the first m f

largest eigenvalues as columns.
Random initialization ˜B and normalize the columns
of ˜A

T
˜K˜B and

AT
i Ki(Yi, y) to have unit �2-norm.

Optimization
Repeat

1. For each sample from the source, leave it out and use
the rest training samples to represent it and calculate its
sparse representation coefficient vector by solving Eq.(36).
Similar, calculating the coding for each labelled sample
from the target domain.

2. Solve ˜A with fixed ˜B using Algorithm 2.
3. Solve ˜B with fixed ˜A via Eq.(35);

Until convergence
Output: Learning dictionary D, and projection matrices

{A}M
i=1.

Step 2 (Learn ˜B With Fixed ˜A): We now assume that ˜A is
fixed. The objective function can be written as:

J (˜B) = max
˜A,˜B

tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr(˜A
T
˜K˜Sw˜K

T
˜A)

. (30)

To learn the dictionary, we write the dictionary D =
[D1, D2, · · · , Dc], where c is the number of classes. From
the Proposition 1, we can get Di = ˜P˜Y˜Bi and Ds = ˜P˜Y˜Bs ,
where ˜B = [˜B1,˜B2, · · · ,˜Bc]. Di and Ds are the sub-dictionary
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Algorithm 2 Alternating Projection

Input: ˜K, ˜Sb, ˜Sw , step length η1, maximum number of
iterations t .
Initialize ρ.

Repeat
Compute ˜A by solving the corresponding eigenvalue
problem in Eq.(27).
Computeρ = ρ − η1

f (ρ)
f ′(ρ) .

Until f (ρ) = 0 or t reached.
Output: ˜A.

associated with class i and s, respectively. Our objective
function in Eq.(30) can be rewritten as

J (˜Bi ) = max
Bi

c
∑

i=1

tr(˜A
T
˜S

i
b
˜A)

tr(˜A
T
˜Sw˜A)

, (31)

where ˜S
i
b = ∑

s �=i (
˜Ki − ˜K˜Bs˜�

s
b)(

˜Ki − ˜K˜Bs˜�
s
b)

T , ˜Sw =
∑c

i=1
˜S

i
w = ∑c

i=1(
˜Ki − ˜K˜Bi ˜�

i
b)(

˜Ki − ˜K˜Bi ˜�
i
b)

T and
˜Ki = ˜Y

T
˜Yi . ˜�s

b = [�1,s
b ,�2,s

b · · · ,�M,s
b ] and ˜�i

w =
[�1,i

w ,�2,i
w , · · · ,�M,i

w ] are coding coefficient matrices with
respect to class s and class i , s �= i , respectively. These
two objective functions Eq.(30) and Eq.(31) are the same, but
they are formulated in a different way for the convenience of
optimization. (Please see Appendix C).

Here, �
1,s
b = [α1,s

1,1,α
1,s
1,2, · · · ,α1,s

c,n1
c
], where α

1,s
i, j is the

representation coefficient vector associated with class s,
s �= i from domain 1, i = 1, · · · , c, j = 1, · · · , n1

i .
�1,i

w = [α1,i
1,1,α

1,i
1,2, · · · ,α1,i

c,n1
c
], where α

1,i
i, j is the representation

coefficient vector associated with class i .
We update ˜B class by class sequentially. When updating ˜Bi ,

˜Bs , s �= i associated to the other class will be fixed. The
optimization scheme is based on gradient ascent. Apply the
chain rule, we have

�
˜Bi

J (˜Bi ) = ∂ J (˜Bi )

∂˜S
i
b

∂˜S
i
b

∂˜Bi
+ ∂ J (˜Bi )

∂˜Sw

∂˜Sw

∂˜Bi
. (32)

Since there is no relations between ˜S
i
b and ˜Bi , ∂˜S

i
b/∂˜Bi = 0.

It is easy to find that

∂ J (˜Bi )

∂˜Sw

= −tr(˜A
T
˜S

i
b
˜A)˜A

T
˜A

(

tr(˜A
T
˜Sw˜A)

)2 , (33)

∂˜Sw

∂˜Bi
= 2˜K(˜�i

w)T (˜K˜Bi ˜�
i
w − ˜Ki ). (34)

With the gradient in Eq.(32) calculated, we employ a projected
gradient ascent procedure for updating ˜Bi

˜Bi = ˜Bi + η2�˜Bi
J (˜Bi ). (35)

where η2 is the step size for updating the sub-dictionary ˜Bi .
When ˜A and ˜B have been learned, we then calculate the

sparse representation coefficient for each input sample from
the source and target domains in the transformed space.

Fig. 3. Objective function versus number of iterations on CMU Multi-Pie
dataset.

Eq.(2) can be changed into the following formula:

α̂ = arg min
α

‖Piy −˜P˜Y˜Bα‖2
2 + λ‖α‖1

= arg min
α

‖AT
i Ki(Yi, y) − ˜A

T
˜K˜Bα‖2

2 + λ‖α‖1, (36)

where Ki(Yi, y) = YT
i y and ˜K = ˜Y

T
˜Y. We repeat the above

two steps until the algorithm is convergent. As discussed
earlier, our method is non-convex and often converges to a
local maximum in a few iterations. To empirically show the
convergence of our method, Fig. 3 shows the curve of the
objective function versus the number of iterations. From Fig. 3
we can see that our method can achieve stable performance in
a few iterations.

A. Nonlinear Extension

In many computer vision tasks, linear representations are
inadequate, in particular, when the underlying data structure
is often nonlinear. There are several approaches that can
deal with nonlinear data [6], [9]. These essentially map the
nonlinear data into high dimensional feature spaces using the
kernel trick [46] such that samples of the same classes are
easily grouped together and are linearly separable. We adopt
the use of Mercer kernels to extend our analysis to the
nonlinear case.

Let φ : y → φ(y) be a nonlinear mapping function from
original feature space to the high dimensional feature space H.
Then the source domain and target domain data in H can be
expressed as φ(Y1) and φ(Y2), respectively. Since the feature
space H has a very high or possibly infinite dimensional,
it is necessary to perform dimensionality reduction in H. The
projection P i from the high dimensional space to the reduced
space is no longer linear. Similar to proposition 1, by letting
K = 〈φ(˜Y),φ(˜Y)〉, we can show that:

P i = AT
i φ(Yi)

T

and

D = ˜A
T K˜B.

Similar to the linear case, we get the objective function as

J(˜A,˜B) = max
˜A,˜B

tr(˜A
TK˜SbKT

˜A)

tr(˜A
TK˜SwKT

˜A)

s.t. ˜A
T
i Ki˜Ai = I, ∀i = 1, 2, · · · , M. (37)
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V. CLASSIFICATION

When the projections Pi and dictionary D are learned,
we project the testing sample via Pi and encode the projected
sample over the learned dictionary in the projected low-
dimensional space. Once we obtain the coding coefficients α̂,
the reconstruction residual for each class can be used for
classification. Given a testing sample, yte from domain k,
we propose the following steps for classification. Similar
to [39], we will consider the nonlinear setting.

1) Compute the embedding of the testing sample in the low-
dimensional subspace using the corresponding projections Pk

zte = Pkφ(yte) = AT
kKte, (38)

where Kte = 〈φ(Yk),φ(yte)〉.
2) Compute the coding coefficient α̂te over dictionary D by

solving the following optimization problem

α̂te = arg min
αte

‖zte − Dα‖2
2 + λ‖α‖1, (39)

where λ is the regularization parameter to control the sparsity
of α.

3) After obtaining the coding coefficients α̂te, the classifica-
tion can be performed using minimum class-wise reconstruc-
tion residual, we classify the testing sample via

label(yte) = arg min
i=1,··· ,c ‖zte − Di α̂

i
te‖2

2, (40)

where α̂i
te is sparse code associated with the i -th class.

VI. EXPERIMENTS

We evaluate the performance of OCPD-SRC by using two
typical applications including face recognition and object
recognition. For face recognition, performance are evaluated
on the well-known CMU Multi-Pie dataset. Then we perform
our method on domain adaptation datasets and compare it with
existing adaptation algorithms.

A. Parameter Setting

We have four parameters, λ, η1, η2 and μ in the proposed
OCPD-SRC model. To achieve the best performance, in all
experiments, the sparsity regularization parameter λ is deter-
mined by 5-fold cross-validation on the training data and fixed
for each dataset. We found that using λ = 0.05 for training and
λ = 0.01 for testing yield a better performance. η2 is the step
size for updating the sub-dictionary ˜Bi , η1 is the step length
for updating ρ. μ is a regularization parameter. We empirically
set the parameters η1 = 1, η2 = 0.1, which work well in all
of our experiments. The parameter μ is set to be 0.001 for
all experiments. For all the compared methods, we use their
original settings provided in the corresponding papers.

B. Face Recognition

The CMU Multi-Pie dataset [61] contains images
of 337 subjects captured in 4 sessions with simultaneous varia-
tion in 15 poses, 6 expressions and 20 illuminations. Following
the same experimental protocol [38], we use 129 subjects
common to both Session 1 and Session 2. The experiment
is done on 5 poses, ranging from frontal to 75◦. Frontal faces

Fig. 4. Some images of one person under different poses and illuminations.

Fig. 5. Recognition rate of the proposed method with other algorithms for
face recognition across poses.

are taken as the source domain, while different off-frontal
poses are taken as target domains. Dictionaries are trained
using illuminations {1, 4, 7, 12, 17} from the source and the
target poses, in Session 1 per subject. All the illumination
images from Session 2, for the target pose, are taken as the
testing image. Fig. 4 shows some images of one person under
different poses (frontal and 60◦) and different illuminations
{1, 4, 7, 12, 17} from session 1. We set the dictionary size
is 5 and the final dimension is 140.

Fig. 5 shows the results of our method and several recently
proposed multi-view recognition algorithms [62]. It can be
seen from Fig. 5 that our method achieves the best results
in most of cases and outperforms SDDL at various poses.
SRC is less effective and its performance decreases rapidly
with an increase in the level of rotation. This indicates that
the sparse coding framework is insufficient when the testing
data has different characteristics than the data used for training.
FDDL also is not optimal here as it is not designed based on
domain adaptation.

C. Object Recognition

The proposed method is evaluated using a recent domain
adaptation dataset which was created by combining the Office
dataset [23] with Caltech-256 [47] dataset. The Office dataset
contains 3 domains: Amazon, Webcam and DSLR. In each
domain there are a total of 31 categories,1 such as headphones,

1The 31 categories in the database are: backpack, bike, bike helmet,
bookcase, bottle, calculator, desk chair, desk lamp, computer, file cabinet,
headphones, keyboard, laptop, letter tray, mobile phone, monitor, mouse, mug,
notebook, pen, phone, printer, projector, puncher, ring binder, ruler, scissors,
speaker, stapler, tape, and trash can.
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TABLE I

RECOGNITION RATES (%) ON SINGLE SOURCE DOMAIN ADAPTATION

Fig. 6. Sample images from the Headphones and Computer-Monitor
categories in Amazon, DSLR, Webcam and Caltech-256. Amazon and
Caltech-256 datasets have diverse images; DSLR and Webcam are similar
datasets with mostly images from offices.

monitor, keyboard, cycle, ect. To validate the proposed method
on a wide range of datasets, we use the Caltech 256 as
the fourth domain. The Caltech 256 dataset [47] contains
30,607 images of 256 categories. There are at least 80 images
per category. Fig. 6 shows some sample images from these
datasets, and clearly highlights the differences between them.

In order to clearly illustrate the advantage of OCPD-SRC,
we compare our method with state-of-the-art adaptation algo-
rithms such as [22]–[24], [28], [36], and [39] and two other
non-domain adaptation methods SRC [1] and FDDL [15].
In addition, the results obtained by using DASH-N [63]
are also included in the comparison. By using the idea of
hierarchical networks, DASH-N jointly learns a hierarchy
of features together with transformations that address the
mismatch between different domains. For fair comparison,
similar to DASH-N, in our experiments we use a two-layer
networks to learn the feature representation and then perform
the classification using the concatenated features, denoted
as OCPD-SRC (hierarchical). For each dataset, the average
recognition accuracy is used as the criterion to compare the
performances of different state-of-the-art algorithms, and we
denote these four domains as A, C, W and D for Amazon,
Caltech 256, Webcam and DSLR respectively. Furthermore,
in order to test the ability of the proposed method to a wide
range of domains, we create two new datasets by performing

half-toning [48] and edge detection [49] algorithms on images
from the Office dataset. The following describes the details of
the experiments and results.

1) Experimental Setup: Following the experiment setting
in [38], we evaluate the proposed method by using three step-
ups. In the first setup, 10 overlapping categories: Backpack,
Touring Bike, Calculator, Headphones, Computer-Keyboard,
Laptop 101, Computer Monitor, Computer Mouse, Coffee
Mug, and Video Projector, between the Office dataset and
Caltech 256 dataset are used. There are 8 to 151 samples per
category per domain, and 2533 images in total. In the second
setup, all 31 categories from Amazon, Webcam, and DSLR
are used to evaluate various algorithms. Finally, we evaluate
our method for adaptation using multiple domains. In the
third cases, if the source domain is Amazon or Caltech,
20 samples per category are selected for training, Otherwise,
only 8 training samples per category are selected for DSLR
and Webcam. 3 training samples for all of them when used for
target domain. The remaining images from the target domain
are used for testing. We randomly split the training and testing
datasets, and repeat each experiment 20 times for each pair of
source and target domains.

In all our experiments, we use the precomputed 800-bin
SURF (Speeded-Up Robust Features) features provided
in [17] and [23] for all the dataset. The simple non-parametric
histogram intersection kernel is used in our method. When
compared with DASH-N, we follow the experimental setup
of [63] and cross-validation on the training data is performed
to obtain the optimal parameters.

2) Single-Source Domain Adaptation Experiment: In this
experiment, the number of dictionary atoms is set as 50,
i.e., five atoms per category. SRC and DASRC use all the
training samples as the dictionary. The feature dimension after
projection is set as 65. The recognition results of different
algorithms on 8 pairs of source-target domains are shown
in Table I. From Table I, we can see that OCPD-SRC is
consistently better than that of other algorithms for all domain
pairs except the results obtained for DLSR-Webcam pair.
GFK [24] gains the best performance on this pair of source-
target domains. Our method always outperforms SDDL [39]
in all pairs of source-target domains, especially for pairs such
as Caltech-Amazon, Amazon-Caltech, Webcam-Caltech, and
Webcam-Amazon, we achieves at least 10% improvements
over SDDL. The main reason is that our proposed OCPD-SRC
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TABLE II

SINGLE SOURCE RECOGNITION RATES ON ALL 31 CLASSES

is designed based the decision rule of SRC, thus, the learned
projections of data and dictionary by using our method
can capture more discriminative information in the reduced
subspace which is meaningful to classification. In addition,
the low dimensional representation can well fit SRC, while
SDDL cannot. DASRC achieves better performance on pairs of
Caltech-Amazon, Caltech-DLSR, and Amazon-Caltech. This
is because in these pairs the training images are sufficient,
using these training samples as the dictionary contains enough
discriminant information and has better representation ability.
We also observe that when the test data has a different
distribution than the training data, SRC and FDDL achieve
poor performance.

From Table I, We can also observe that DASH-N provide
better results than OCPD-SRC. The main reason is that
DASH-N employ a multi-layer network to jointly learn the
feature representation of data and domain shifts in each layer
of the hierarchy and a better representation of data from
different domains can be obtained. Since high-level features
are sometimes more useful than low-level ones. However, our
algorithm only contain a single layer and may not capture
adequately the shift between the source and target domains.
In addition, during the learning process, OCPD-SRC employs
the hand-crafted features which requires a deep understanding
of domain knowledge. In many applications, this requirements
may be impractical. By employing the hierarchical network,
OCPD-SRC (hierarchical) achieves reasonably good perfor-
mance over DASH-N and obtains the best results for all pairs.
Since DASH-N can be viewed as a generalization of the
SDDL, thus in each layer, the learned transformations and
dictionary by using our method have stronger discrimination
power than DASH-N. This is the reason why our method can
obtained better performance.

We also compare the recognition results for all 31 classes,
as shown in Table II. OCPD-SRC outperforms all compared
method in 2 out of 3 pairs of source-target domains except the
results obtained by using multi-layer networks. For pairs such
as Webcam-Amazon, OCPD-SRC achieve more than 10%
improvements over SDDL. As was expected, OCPD-SRC
(hierarchical) also performs better than DASH-N and achieves
the best results for all domain pairs. This proves that hierarchi-
cal structure is helpful for transferring knowledge from source
domain to target domain.

3) Multi-Source Domain Adaptation Experiment: For multi-
source domain adaptation experiment, only the Office dataset
is used and various algorithms are tested on all 31 classes.

TABLE III

RECOGNITION RATES (%) ON MULTIPLE SOURCES DOMAIN ADAPTATION

We set the number of dictionary atoms as 186 (i.e., 6 atoms
per category) and the feature dimension is set as 90. For SDDL
and FDDL, we follow the experiment setting in [38] and [39].
Table III lists the results of our proposed method and other
multi-source domain adaptation methods. It can be seen from
Table III that OCPD-SRC achieves the best results except the
results obtained by using multi-layer networks for all the set-
tings. This proves the effectiveness of our method. Especially,
in the case of adapting from Webcam and DLSR to Amazon,
our method significantly outperforms DASRC (from 27.9%
to 38.7%). Compare to SDDL, it achieves an improvement
of 14%. Similarly, SRC and FDDL are inefficient, when the
testing data has a different distribution than the data used
for training. When using the multi-layer networks, our meth-
ods achieve the best performances and is consistently better
than DASH-N.

4) Parameter Analysis: We carry out several experiments
to examine the performances of our method by using different
parameters. We first evaluate the performance of OCPD-SRC
versus different number of source images. Following [39],
we choose Amazon/Webcam domain pair. Fig. 7 (a) shows
the recognition rates of our method, SDDL, DASRC, FDDL
and SRC over different number of source images. We can
see that our method is consistently better than those of other
methods, irrespective of the variations of source images. With
increase of the number of source images, the performance
of our method and SDDL slightly increase, while FDDL
decreases with more source images. This indicates that we
can improve the recognition performance of our method by
increasing the number of source images. In addition, DASRC
and SRC also increase when increase the number of source
images.

We also evaluate our method OCPD-SRC using different
dictionary size. We vary the dictionary size under six different
source-target pairs. As shown in Fig. 7 (b), our approach can
maintain high recognition accuracy when the dictionary size
reaches 3 in most of pairs of source-target domains. With the
increase of dictionary size, the performance of OCPD-SRC
varies in a small range. In our experiments, we set 5 dictionary
atoms per class.

Finally, we investigate the effect of the dimension of the
learned feature projections of our method. The recognition
rates of OCPD-SRC with respect to different dimensions are
shown in Fig. 7 (c). We test our method on eight different
source-target pairs. From Fig. 7 (c) we can see that with the
increase of the dimensions, the performance of OCPD-SRC
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Fig. 7. Recognition rate of our method under different parameters: (a) number of source images, (b) dictionary size, and (c) feature dimension.

TABLE IV

RECOGNITION RATES OF DIFFERENT APPROACHES ON THE HALF-TONING DATASET. 10 COMMON CLASSES ARE USED

TABLE V

RECOGNITION RATES OF DIFFERENT APPROACHES ON THE HALF-TONING DATASET. 10 COMMON CLASSES ARE USED

also increase, and when the dimension over 40, our method
tends to be stable.

D. Halftone and Edge Images

In order to test the effectiveness of OCPD-SRC in adapting
to different domains, we conduct experiments on two new
datasets generated by applying half-toning and edge detection
from the office dataset. Fig. 8 shows sample of images from the
keyboard class from these datasets. Half-toning images, which
imitate the effect of jet-printing technology in the past, are
generated using the dithering algorithm in [48]. Edge images
are obtained by applying the Canny edge detector [49] with the
threshold set to 0.07. We first extract 800-bin SURF features
for both the domains, following the same approach as for the
original dataset. And then use a two-layer networks to learn
the feature representation as provided in [63].

Table 4 and Table 5 show the performances of different algo-
rithms when adapting to half-tone and edge images datasets.
From Table 4 and Table 5, we can see that employing the man-
ually designed features, OCPD-SRC outperforms all compared
method in 8 pairs of source-target domains. For pairs such
as Caltech-Amazon, Amazon-Webcam, and Webcam-Amazon,

Fig. 8. Example images from the keyboard class in different domains. First
row: Halftone images, second row: edge images. (a) Amazon. (b) Caltech.
(c) DSLR. (d) Webcam.

there is more than 8% improvement over SDDL [40]. This
proves the ability of our method for adapting well to new
domains.

In our experiments, we also compared with Hierarchical
Matching Pursuit (HMP) cite55, without performing domain
adaptation. The HMP method builds a feature hierarchy layer
by layer using an efficient matching pursuit encoder. As a
result, it is robust to some of the variations present in the
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images such as illumination changes, pose variations, and
resolution variations. It can been seen from these tables
that HMP achieves good performance on half-tone and edge
images datasets. This demonstrates the effectiveness of learn-
ing feature representation. OCPD-SRC (Hierarchical)achieves
better performance than DASH-N and HMP in all scenarios.

VII. CONCLUSION

We presented a novel domain adaptation dictionary learning
method (OCPD-SRC). By jointly learning the projections
of data from both source and target domains and a com-
mon structured dictionary, the proposed method obtained a
better representation of data from different domain in the
reduced space, and extracted more discriminant information
for object classification. OCPD-SRC is designed according to
the decision of SRC; it maximizes the between-class sparse
reconstruction residuals of data with different domains and
minimizes the within-class sparse reconstruction residuals
of data in the projected low dimension subspace. Hence,
the learned projections of data and dictionary can fit SRC well
and improve the recognition performance of SRC for domain
adaptation. In addition, our method can be easily extended to
multiple domains and can be easily kernelized so that it can
deal with the non-linear structure of data.

When no labels are available for the target domain the
proposed method is inefficient. Hence, how to extend the
proposed method for unsupervised adaptation is our further
work. Furthermore, our methods only consider in a single
layer, which ignores the possibility of transferring at multiple
levels of the feature hierarchy. How to design an appropriate
network to learn the feature representation is another further
direction.

APPENDIX A
PROOF OF PROPOSITION 1

Proposition 1: There exists an optimal solution P∗
1, P∗

2, · · · ,
P∗

M, D∗ to Eq.(17), which has he following form:

P∗
i = (YiAi)

T ,∀i = 1, 2, · · · , M, (41)
D∗ = ˜P

∗
˜Y˜B, (42)

where ˜P
∗ = [P∗

1, P∗
2, · · · , P∗

M], for some Ai ∈ RNi ×m f and
some ˜B ∈ R

∑

Ni ×K .
Proof (Form for D∗): First we will show the form for D∗.

We can decompose D∗ into orthogonal components as follows

D∗ = D‖ + D⊥ (43)

where D‖ = (˜P˜Y)˜B, DT⊥(˜P˜Y) = 0,

for some ˜B ∈ R
∑M

i=1 Ni ×K . Substituting the value of D∗ into
the value of Eq.(17), we get for the two terms of J (˜P, D).

Numerator Term:

= tr
(

(˜P˜Y − D˜�b)
T (˜P˜Y − D˜�b)

)

= tr(˜Y
T
˜P

T
˜P˜Y + ˜Y

T
˜P

T
D‖˜�b + ˜�T

b DT‖ D‖˜�b

+ ˜�T
b DT⊥D⊥˜�T )

≥ tr(˜Y
T
˜P

T
˜P˜Y + ˜Y

T
˜P

T
D‖˜�b + ˜�T

b DT‖ D‖˜�b). (44)

Denominator Term:

= tr
(

(˜P˜Y − D˜�w)T (˜P˜Y − D˜�w)
)

= tr(˜Y
T
˜P

T
˜P˜Y + ˜Y

T
˜P

T
D‖˜�w + ˜�T

wDT‖ D‖˜�w

+ ˜�T
wDT⊥D⊥˜�T )

≥ tr(˜Y
T
˜P

T
˜P˜Y + ˜Y

T
˜P

T
D‖˜�w + ˜�T

wDT‖ D‖˜�w). (45)

The equality is reached when D⊥ = 0. Hence, the form of D∗
is:
D∗ = ˜P˜Y˜B.

Form for P∗
i : For each i = 1, · · · , M, P∗

i can be decom-
posed as:

P∗
i = P‖,i + P⊥,i (46)

where P‖,i = (YiAi)
T , P⊥,iYi = 0.

Let ˜P‖ = [˜P‖,1,˜P‖,2, · · · ,˜P‖,M] and ˜P⊥ = [˜P⊥,1,
˜P⊥,2, · · · ,˜P⊥,M]. Substituting the value for P∗ into Eq.(17),
we can write the term of J (˜P, D) as:

Numerator Term:

= tr
(

(˜P
∗
˜Y − D˜�b)(˜P

∗
˜Y − D˜�b)

T
)

= ‖˜P∗
˜Y(I − ˜B˜�b)‖2

F
= ‖(˜P‖ +˜P⊥)˜Y(I − ˜B˜�b)‖2

F
= ‖˜P‖˜Y(I − ˜B˜�b)‖2

F

= tr
(

˜P‖˜Y(I − ˜B˜�b)(I − ˜B˜�b)
T
˜Y

T
˜P

T
‖
)

. (47)

Denominator Term:

= tr
(

(˜P
∗
˜Y − D˜�w)(˜P

∗
˜Y − D˜�w)T

)

= ‖˜P∗
˜Y(I − ˜B˜�w)‖2

F= ‖(˜P‖ +˜P⊥)˜Y(I − ˜B˜�w)‖2
F

= ‖˜P‖˜Y(I − ˜B˜�w)‖2
F

= tr
(

˜P‖˜Y(I − ˜B˜�b)(I − ˜B˜�b)
T
˜Y

T
˜P

T
‖
)

. (48)

Combining the two terms together, the objective function
becomes:

max
tr

(

˜P‖˜Y(I − ˜B˜�b)(I − ˜B˜�b)
T
˜Y

T
˜P

T
‖
)

tr
(

˜P‖˜Y(I − ˜B˜�b)(I − ˜B˜�b)T
˜Y

T
˜P

T
‖
) . (49)

It can be seen that from Eq.(49), that the object function is
independent of P⊥,i, hence it can be safely set to be 0. Hence,

P∗
i = (YiAi)

T

APPENDIX B
PROOF OF LEMMA 1

Lemma 1: (1). f (ρ) is a decreasing function.
(2). f (ρ) = 0 i f f ρ = ρ∗.

Proof: For any ρ, denote ˜A
∗

that maximmize f (ρ).
To prove (1) we need to prove G(˜A

∗
, ρ2) < G(˜A

∗
, ρ1) for

ρ2 > ρ1.
We compare the sums of the m f largest eigenvalues of

˜K(˜Sb − ρ2˜Sw)˜K
T − ρ2μI and ˜K(˜Sb − ρ1˜Sw)˜K

T − ρ1μI for
ρ2 > ρ1. We have

G(ρ2) − G(ρ1) = (ρ1− ρ2)˜K˜Sw˜K
T + (ρ1 − ρ2)μI ≺ 0 (50)

and therefore G(ρ2) < G(ρ1), property 1 is proved.
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(2). To prove (2), we start by observing that the suf-
ficient condition is trivial, i.e., according to the defi-
nition of ρ∗, ρ = ρ∗ implies f (ρ) = 0. Next,
since tr

(

˜A
T
(˜K˜Sw˜K

T + μI)˜A
)

> 0 for any ˜A satisfies

AT
i KiAi = I, we can write

tr
(

˜A
T
(˜K(˜Sb − ρ˜Sw)˜K

T − ρμI)˜A
)

≤ 0 i f f

tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr
(

˜A
T
(˜K˜Sw˜K

T + μI)˜A
) ≤ ρ. (51)

This can be restated as

f (ρ) ≤ 0 i f f ρ∗ ≤ ρ. (52)

Suppose now that f (ρ) > 0 for a certain ρ. Then, there is
a ˜A0 such that

tr
(

˜A
T
0 (˜K(˜Sb − ρ˜Sw)˜K

T − ρμI)˜A0

)

> 0 ⇒

tr(˜A
T
0
˜K˜Sb˜K

T
˜A0)

tr
(

˜A
T
0 (˜K˜Sw˜K

T + μI)˜A0

) > ρ. (53)

This means that

max
˜A

tr(˜A
T
˜K˜Sb˜K

T
˜A)

tr
(

˜A
T
(˜K˜Sw˜K

T + μI)˜A
) > ρ, (54)

and therefore, ρ∗ > ρ. It can be expressed as

f (ρ) > 0 ⇒ ρ∗ > ρ. (55)

Thus, f (ρ) = 0 implies ρ∗ = ρ. This proves
property 2.

APPENDIX C

The within-class sparse reconstruction residual of source
domain in Eq.(10) can be rewritten as follows:

J 1
w = tr

⎛

⎝

c
∑

i=1

n1
i

∑

j=1

(P1y1
i, j − Dδi (α

1
i, j ))(P1y1

i, j − Dδi (α
1
i, j ))

T

⎞

⎠

= tr

⎛

⎝

c
∑

i=1

n1
i

∑

j=1

(P1y1
i, j − Diα

1,i
i, j )(P1y1

i, j − Diα
1,i
i, j )

T

⎞

⎠

=
c

∑

i=1

tr(P1Y1
i − Di�

1,i
w )(P1Y1

i − Di�
1,i
w )T

=
c

∑

i=1

‖P1Y1
i − Di�

1,i
w ‖2

F , (56)

where�1,i
w = [α1,i

1,1,α
1,i
1,2, · · · ,α1,i

c,n1
c
], α

1,i
i, j is the representation

coefficient vector associated with class i , i = 1, · · · , c,
j = 1, · · · , ni .

Then the between-class sparse reconstruction residual of
source domain in Eq.(11)

J 1
b = tr

⎛

⎝

c
∑

i=1

n1
i

∑

j=1

∑

s �=i

(P1y1
i, j −Dδs(α

1
i, j ))(P1y1

i, j −Dδs(α
1
i, j ))

T

⎞

⎠

=
c

∑

i=1

tr

⎛

⎝

n1
i

∑

j=1

∑

s �=i

(P1y1
i, j − Dsα

1,s
i, j )(P1y1

i, j − Dsα
1,s
i, j )T

⎞

⎠

=
c

∑

i=1

‖P1Y1
i − Ds�

1,s
b ‖2

F , (57)

where �
1,s
b = [α1,s

1,1,α
1,s
1,2, · · · ,α1,s

c,n1
c
], α

1,s
i, j is the representation

coefficient vector associated with class s, s �= i .
Similarly, the within-class sparse reconstruction residual

and the between-class sparse reconstruction residual of target
domain in Eq.(12) and Eq.(13) can be rewritten as:

J 2
w =

c
∑

i=1

‖P2Y2
i − Di�

2,i
w ‖2

F , (58)

and

J 2
b =

c
∑

i=1

‖P2Y2
i − Ds�

2,s
b ‖2

F , (59)

where �2,i
w = [α2,i

1,1,α
2,i
1,2, · · · ,α2,i

c,n2
c
], and �

2,s
b = [α2,s

1,1,α
2,s
1,2,

· · · ,α2,s
c,n2

c
]. α

2,i
i, j , α

2,s
i, j are the representation coefficients which

associated with class i can class s, respectively. Finally,
we maximize the following cost function

max Jb = max{J 1
b + J 2

b }
= max

c
∑

i=1

∑

s �=i

(

‖˜P˜Yi − Ds˜�
s
b‖2

F

)

, (60)

and simultaneous minimize the following cost function:

max Jw = max{J 1
w + J 2

w}
= max

c
∑

i=1

(

‖˜P˜Yi − Di ˜�
i
w‖2

F

)

, (61)

where ˜P = [P1, P2], ˜Y =
[

Y1
i 0

0 Y2
i

]

, ˜�s
b = [�1,s

b ,�2,s
b ]

and ˜�i
w = [�1,s

w ,�2,s
w ]. Thus, Combine the proposition 1,

the objective function can be rewritten as follows:

J = max
˜A,D

∑c
i=1

∑

s �=i tr
(

˜A
T
(˜Ki − Bs˜�

s
b)(

˜Ki − Bs˜�
s
b)

T
˜A

)

∑c
i=1 tr

(

˜A
T
(˜Ki − Bi ˜�i

w)(˜Ki − Bi ˜�i
w)T

˜A
)

= max
Bi

c
∑

i=1

tr(˜A
T
˜S

i
b
˜A)

tr(˜A
T
˜Sw˜A)

, (62)

where ˜Ki = ˜Y
T
˜Yi .
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